Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(7): 4347-4367, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36689157

RESUMO

The economic viability of algal biodiesel can be improved by enhancing the microalgal lipid accumulation and using agricultural waste as a cheap and sustainable source of catalysts. In the current study, the effect of various nitrogen concentrations on the growth and lipid of Chlorella homosphaera were investigated. Furthermore, two-step catalytic conversion was applied to convert the oil of C. homosphaera with high free fatty acids (FFA) to biodiesel using waste radish leaves as a source of a heterogeneous base catalyst. The result revealed that the maximum lipid productivity of 25.0 mg L-1 day-1 and lipid content of 30.83% were obtained under nitrogen-depleted and limited nitrogen conditions, respectively. The FFA was reduced from 18.79 to 0.76%, and the acid value was decreased from 37.4 to 1.52 mg KOH g-1 using a 15:1 methanol to oil molar ratio (MTOR), 1.5 wt.% H2SO4, at 60 °C for 150 min. Under the optimized conditions, i.e., MTOR of 10:1, 3 wt.% of catalyst ratio for 120 min at 60 °C, the highest oil conversion of 96.61% was obtained. The physicochemical properties of the produced biodiesel were in the range of the standard specification norms for biodiesel. Hence, the proposed two-step catalytic conversion using calcined radish leaves as a heterogeneous catalyst has thus exhibited good potential for biodiesel production using algal oil with high FFA.


Assuntos
Chlorella , Raphanus , Biocombustíveis , Esterificação , Óleos de Plantas/química , Ácidos Graxos não Esterificados/química , Catálise , Serina-Treonina Quinases TOR
2.
Chemosphere ; 314: 137625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572360

RESUMO

This study investigated an integrated approach to the biowaste transformation and valorization of byproducts. Biochar obtained from the banana pseudostem was calcined to synthesize a heterogeneous catalyst and sustainably prepare a highly alkaline solution. The ash was utilized directly as a heterogeneous catalyst in biodiesel production from waste cooking oil. At the same time, an alkaline solution prepared from the ash was used for delignification and recovery of lignin from bamboo leaves by the hydrothermal reaction. Techniques like Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), and Energy dispersive X-ray (EDX) were applied to characterized the catalyst. The alkaline solution was analyzed with Atomic absorption spectroscopy (AAS). The Response surface methodology (RSM) technique was considered for the optimization of different parameters in the transesterification and hydrothermal reaction. Under the optimized condition, waste cooking oil (WCO) to Fatty acid methyl ester (FAME) conversion was 97.56 ± 0.11%, and lignin recovery was 43.20 ± 0.45%. While at the best operating pyrolysis temperature, the liquid fraction yield from the banana pseudostem (500 °C) was 38.10 ± 0.31 wt%. This integrated study approach encourages the inexpensive, sustainable, and environment-friendly pathway for synthesizing catalysts and preparing a highly alkaline solution for the valorization of biowaste into biofuel and biochemicals.


Assuntos
Biocombustíveis , Musa , Lignina , Esterificação , Catálise , Folhas de Planta , Óleos de Plantas/química
3.
Chemosphere ; 300: 134497, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398470

RESUMO

The green synthesis of nanoparticles (NPs) is the safest, ecofriendly, cost-effective, and non-hazardous approach of nanotechnology. In the current study, we described the green synthesis of silver nanoparticles (AgNPs) using Cuphea carthagenensis aqueous leaf extract as a reducing, capping, and stabilizing agent. The study aims at the synthesis, characterization, optimization, and determination of the antibacterial activity of Cc-AgNPs against clinically important human pathogens. Coating of cotton fabrics with Cc-AgNPs and their efficacy against skin infection causing organisms was also evaluated. Furthermore, antioxidant activity, growth assay and time kill assay of Cc-AgNPs were also performed in the study. The biosynthesized Cc-AgNPs were characterized by UV-visible spectrometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The spectroscopic and microscopic analysis demonstrated biosynthesis of face-centered cubic (fcc) crystalline spherical Cc-AgNPs with an average particle size of 10.65 ± 0.1 nm. Optimized peak synthesis of Cc-AgNPs was reported at pH7, 55 °C, 4 mM silver nitrate, and 5:45 (plant extract: silver nitrate). Cc-AgNPs exhibited potent antioxidant effect and antibacterial activity against both Gram-positive and Gram-negative bacteria. The lowest MIC (15 µg/ml) and MBC (25 µg/ml) values were reported against S. typhimurium. The Cc-AgNPs coated fabrics demonstrated potent antibacterial activity against tested strains. This application could be helpful in wound healing management. Furthermore, the hemolytic analysis demonstrated that Cc-AgNPs exhibit non-toxic nature against Red Blood Cells (RBCs) at the tested concentrations. In conclusion, the investigation demonstrated a fast, stable, and eco-friendly approach to the biosynthesis of Cc-AgNPs along with their antibacterial and antioxidant properties.


Assuntos
Cuphea , Nanopartículas Metálicas , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...